edexcel 쁯

Mark Scheme (Results)

Summer 2013

International GCSE Mathematics
(4MB0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037229
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
- Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
- Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- awrt - answers which round to....
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths

Summer 2013 - Paper 01
Mark Scheme

Question Number	Working	Notes		Mark
1	$20-(9.95+0.65+0.45+5 x 0.15)$	M 1		
	$£ 8.20$	A 1	2	2

Question Number	Working	Notes		Mark
2	$360-(216+96)$	M1		
	48	A1	2	2

Question Number	Working	Notes		Mark
3	$\frac{18}{450} \times 100$	M1		
	4	A1	2	2

Question Number	Working	Notes		Mark
4	$(3,4)$ $($ accept $x=3, y=4)$ $£ 91.30$	M1		
4 Special Case	$(-1,-2)$ or $x=-1, y=-2$ would score B0, B1	A1	2	2

Question Number	Working	Notes		Mark
$5(\mathrm{a})$	5	B 1	1	1
$5(\mathrm{~b})$	4	B1	1	1

Question Number	Working	Notes		Mark
6	$a=6, b=0$	$\mathrm{~B} 1, \mathrm{~B} 1$	2	2
6 Special Case	$\mathrm{SC}(\mathrm{i}): \mathrm{a}=0, \mathrm{~b}=6$ would score B0, B1			
	SC(ii): $a=0, b=12$ would score B0, B1 NB: Must have both values for a one-mark award for a special case			

Question Number	Working	Notes		Mark
7	$x>\frac{-12-13}{3}$ (o.e.)	M1		
	Note: $-8.33 /-8.34$ or better $=$ M1			
	-8	A1	2	2

Question Number	Working	Notes		Mark
8	$2(-3)^{3}+(-3)^{2}+k(-3)+6=0$	M1		
	$k=-13$	A1	2	2
	Note: $k \neq-13$ and missing brackets in first line $=\boldsymbol{M O}, \boldsymbol{A O}$ Note: $k=-13$ and no working shown $=$ M1, $\boldsymbol{A 1}$			

Question Number	Working	Notes		Mark
9	$\left(\begin{array}{l}14 \\ 8 \\ 2\end{array}\right)$			
	At least ONE correct value or correct statement seen i.e. 14 or $3 \times 3+2 \times 2+1 \times 1$ All THREE correct values in a 3×1 matrix	M1		2

Question Number	Working	Notes		Mark
10	common denominator of either $\left(x^{2}-1\right)(x+1)$ or $(x-1)(x+1) \quad$ (o.e. $)$ Note: Condone missing final brackets numerator of either $x(x+1)-\left(x^{2}-1\right)$ or $x-(x-1) \quad$ (o.e.) Note: A1 available following a single fraction representation with one common denominator $\frac{1}{(x-1)(x+1)}$ (o.e.) Note: (o.e.) is $\frac{1}{x^{2}-1}$ Note: Correct answer only seen, award full marks Note: Do not isw	A1	3	3

Question Number	Working	Notes		Mark
11	seeing either $10 \sqrt{3}$ or $2 \times 5 \sqrt{3}$ or $2 \sqrt{3}$	M1		
	$\frac{10 \sqrt{3}-4 \sqrt{3}}{2 \sqrt{3}}$ 3	M1dep		
Note: Final A mark dependent on at least $1^{\text {st } M \text { mark being awarded }}$	A1	3	3	
$\frac{2 \sqrt{75} \sqrt{12}-4 \sqrt{3} \sqrt{12}}{\sqrt{12} \sqrt{12}}$ $\frac{2 \sqrt{900}-4 \sqrt{36}}{12}$ 3	M1			

Question Number	Working	Notes		Mark
$12(\mathrm{a})$	$3,5,7,11$	B 1	1	
$12(\mathrm{~b})$	$1,2,3,5,7,9,11$ Note: In parts (a) and (b), commas not needed, accept numbers in any order, allow repetitions	B 1	1	
$12(\mathrm{c})$	4	B 1	1	3

Question Number	Working	Notes		Mark
13	$\binom{28}{4}$ and $\binom{3}{-6}$	B1		
$\binom{28}{4}-\binom{3}{-6}$	M1			
$\binom{5}{2}$	B1	3	3	
	Alternative Method $5 x+3=28$ and $5 x-6=4$ Two values: 25 and 10 $\binom{5}{2}$ Note: Correct answer only seen, award full marks	A 1	3	3

Question Number	Working	Notes		Mark
14	$\frac{12}{2 \times 20 \times \pi}=\frac{x}{360} \quad$ (o.e.) Note: Any correct equation in x $x=\frac{12 \times 360}{2 \times 20 \times \pi}$ Note: x as the subject 34.4° (awrt)	M1 M1dep A1	3	3
	Alternative Method (if no variable stated) 12/circumference (0.0954...) or circumference/12 (10.47....) $0.0954 \ldots \times 360$ or $360 / 10.47$ 34.4° (awrt)	M1 M1dep A1	3	3
	Alternative: Use of radians $12 / 20=0.6$ on its own earns no marks An answer of 0.6 radians earns full marks Arc length $=r \theta$ $12=20 x \quad($ or $12 / 20)$ 0.6	M1 M1dep A1		

Question Number	Working	Notes		Mark
$15(\mathrm{a})$	$2 x-3>0$ followed by a conclusion $x>1.5$	B 1	1	
	Note: Accept equating $2 x-3$ to zero to find $x=1.5$ and concluding that the length cannot be zero or less than zero			
$15(\mathrm{~b})$	$2(2 x-3)+2(3 x+7)$ (o.e.) $10 x+8$ (o.e.)	M 1		

Question Number	Working	Notes		Mark
16	$\left(\frac{2}{5}\right)^{3}$ or $\left(\frac{5}{2}\right)^{3}$ seen	B1		
	Note: accept ratio or decimal form			
	$\frac{500}{V}=\left(\frac{5}{2}\right)^{3}$ (o.e.) or $\left(\frac{2}{5}\right)^{3} \times 500$ (o.e.)	M1		
	Note: For M1, accept $\frac{2}{7}$ or $\frac{5}{7}$ for $\frac{2}{5}$ $32($ awrt)	Alternative method $\sqrt[3]{500}$ seen $\left(\frac{2}{5} \times \sqrt[3]{500}\right)^{3}$ $32($ awrt) Note: Accept 7.9 for $\sqrt[3]{500}$ Note: For the M1 mark, accept $\frac{2}{7}$ or $\frac{5}{7}$ for $\frac{2}{5}$	3	3

Question Number	Working	Notes		Mark
17	4.29×1000 or $\frac{4.29}{97.5}$ or 0.0975	M1		
	$\frac{4.29 \times 1000}{97.5}$ (o.e.)	M1dep		
	44	A1	3	3
	Note: for first M1, accept $97.5 / 1000$			

Question Number	Working	Notes		Mark
18	$\begin{aligned} & h g+h f=f g \quad \text { or } \quad \frac{g+f}{f g}=\frac{1}{h} \\ & h(g+f)=f g \\ & h=\frac{f g}{g+f} \end{aligned}$	M1 M1dep A1	3	3
	Note: $\frac{1}{f}+\frac{1}{g}+\frac{1}{h}=0$ followed by $\frac{g h+f h-f g}{f g h}=0$ earns NO marks until $h g+h f=f g$ Note: No isw Note: Answer dependent on first M mark			
	Special Case 1 $h=\frac{1}{\frac{1}{f}+\frac{1}{g}} \text { implies M1, M0, AO }$ Special Case 2 $h=\frac{1}{\frac{g+f}{f g}} \text { implies M1, M0, A0 }$			

Question Number	Working	Notes		Mark
19	0.15×10^{n} or 10^{13} seen	B1		
any correctly formatted standard form statement	M1	A1	3	3
	1.5×10^{12} (cao) Note: Award 3 marks for correct answer seen (no isw)			

Question Number	Working	Notes		Mark
20(a)	Factors 2, 3 and 7 identified			
Note: Award M1 for at least TWO of the above seen $2^{3} \times 3^{2} \times 7$ or $2 \times 2 \times 2 \times 3 \times 3 \times 7$	M1			
$20(\mathrm{~b})$	14	A 1	2	

Question Number	Working	Notes		Mark
$21(\mathrm{a})$	$\frac{12}{8}=\frac{A E}{6}$ or $\frac{12}{20}=\frac{A E}{A E+6}$ (o.e.)	M 1		
$21(\mathrm{~b})$	$\frac{C B}{7}=\frac{20}{12}$ or $\frac{C B}{7}=\frac{" 9 "+6}{4 "}$ (o.e.)	M 1	2	
	Note: accept 11.6 (awrt) Note: Accept (o.e.) for BOTH answers (i.e. $35 / 3$ is acceptable)	A 1	2	4

Question Number	Working	Notes		Mark
$22(\mathrm{a})$	$\frac{x}{60}=\frac{2}{5}$ or $\frac{2}{5} \times 60$ $x=24$ Note: Do not isw	M1		
22(b)	$60-" 24$ " or $\frac{24 "+x}{60+x}=\frac{1}{2} \times " 24$ "	M1		
	"36"-" 24 " or $60-2 \times " 24 "$ or $\frac{1}{2} \times " 24 "$ Note: For the A mark, the answer must be a positive integer	A1ft	2	4

Question Number	Working	Notes		Mark
23(a)	$x^{3}-3 x^{2}-2 x+6 \quad$ (allow one slip) If COMPLETELY correct Note: No isw (unless a transcription error)	M1 A1	2	
23(b)	One of candidate's terms correctly differentiated from part (a) A second term correctly differentiated from part (a) Note: To gain the method marks, terms may not be suitably/fully simplified (i.e. $3 x^{3-1}$ is fine) Note: If the candidate's answer to part (a) is linear, the $2^{\text {nd }} M$ mark in part (b) is NOT available Note: No method mark should be awarded for differentiating a constant $3 x^{2}-6 x-2 \text { (cao) }$ Note: Accept $6 x^{1}$ for $6 x$ Note: Any subsequent working loses the last mark (the A mark) Note: Accept terms in any order Note: Each term must be suitably simplified	M1 M1dep A1	3	5
	Product Rule Method $\begin{aligned} & (x-3) 2 x+\left(x^{2}-2\right) \\ & 2 x^{2}-6 x+x^{2}-2 \\ & 3 x^{2}-6 x-2 \end{aligned}$	M1 M1dep A1	3	

Question Number	Working	Notes		Mark
24	$x^{2}-6 x+4=11$	M1		
	$x^{2}-6 x-7(=0)$	A1		
	attempt to factorise trinomial quadratic	M1		
	Alternatively: Using the formula: correct substitution of candidate's coefficients into a correctly quoted formula			
	Completing the square: from candidate's coefficients, correctly reducing to $(x-a)^{2}=b$			
	$x=7, x=-1$	A1, A1	5	5
	Note: The $2^{\text {nd }}$ M1 mark is independent so it can be earned for attempting to factorise/solve $x^{2}-6 x+4(=0)$			
	Note: 'Correct' answers following an incorrect attempt to solve the correct quadratic (even though the $2^{\text {nd }} M$ mark has been earned), loses the last two A marks			
	Note: Correct answers followed by further working should have the last A1 deducted (i.e. do NOT isw here)			

Question Number	Working	Notes		Mark
25(a)	$\begin{aligned} & (r+4)^{2}=r^{2}+72 \text { or } 4(4+2 r)=72 \text { or } \\ & 4+2 r=18 \text { or } r=\sqrt{(4+r)^{2}-\sqrt{(72)^{2}}} \end{aligned}$ Note: Accept any equivalent quadratic or linear equation from above statements Note: For 72 accept $(\sqrt{72})^{2}$ or 8.48^{2} or 8.49^{2} or 8.485^{2}	B1	1	
25(b)	$\begin{aligned} & r^{2}+8 r+16=r^{2}+72 \text { or } 16+8 r=72 \text { or } \\ & 4+2 r=18 \end{aligned}$ Note: If part (a) is incorrect, award M1 for an attempt at solving their part (a) Note: If a quadratic, see Question 24 Note: If linear, correctly solving candidate's equation $r=7(c a o)$ Note: accept correct answer of $r=7$ with no wrong working seen	M1 A1	2	
25(c)	$\sin \angle O P C=\frac{" 7 "}{47 "+4} \text { (o.e.) }$ Note: Any correct trig expression from candidate's answer to (b) 39.5° Note: ft from a correct trig equation using candidate's answer to (b) Note: awrt (3SF) a 'correct; angle from candidate's answer to (b)	M1 A1ft	2	5

Question Number	Working	Notes		Mark
27(a)	$\angle B P C=90^{\circ}$ (\angle in a semicircle) Note: for reason "angle made by diameter" or "chords from diameter to circumference" Note: Do not accept tangent - radius $\angle P B C=58^{\circ}$ (alt segment) Note: Angles can be marked on the diagram $\angle P C B=32^{\circ}$	M1 M1 A1	3	3
	Alternative Working 1: $\begin{aligned} & \left(\angle A P B=32^{\circ}\right) \\ & \angle P C B=32^{\circ} \quad \text { (alt segment) }=\mathbf{M 1} \end{aligned}$ Note: for reason accept "angle between a tangent and a chord" or "tangent-secant" Note: Do not accept "tangent-radius" $\angle P C B=32^{\circ}=\mathbf{A 1}$			
	Alternative Working 2: $\begin{aligned} & \angle B P C=90^{\circ}(\angle \text { in a semicircle })=\mathbf{M 1} \\ & \left(\angle A P B=32^{\circ}\right) \\ & \left.\angle P C B=32^{\circ} \text { (alt segment }\right)=\text { M1, A1 } \end{aligned}$			
	Special Case: Correct answer with (or without reasons) scores at least the final A mark			
27(b)	$\begin{aligned} & \angle P A B=180-90-" 32 "-" 32 " \text { (o.e.), } \\ & (\angle \text { sum of } \triangle) \\ & =26^{\circ}(\text { accept correct angle marked on } \\ & \text { diagram }) \end{aligned}$ Note: A correct numerical attempt to find the required angle from candidate's figures for first M mark	M1, M1dep A1	3	3

	Note: No working shown and angle not 26° means 1 $1^{\text {st }}$ M mark not earned.		
	Note: For reason, accept an equivalent statement involving a triangle e.g. "exterior angle of a triangle" for the M1dep mark		
Special Case: Correct answer with (or without) reasons scores at least the final A mark			

Question Number	Working	Notes		Mark
28(a)	A correct attempt to diff. At least one term $2 k t-6$ $\text { " } 2 k(1)-6 "=0$ $k=3$ Note: $s(1)=0$ leading to $k=3$ earns no marks Note: $k=3$ earns full marks provided that the first M mark is earned and no wrong working is seen		4	4
28(b)	Either $s(3)=" 3$ " $\left(3^{2}\right)-6 \times 3+3$ (12) or $s(2)=" 3 "\left(2^{2}\right)-6 \times 2+3$ $\mathrm{s} s(3)-s(2)$ or $s(2)-s(3)$ $9 m$ Note: accept -9 for the A1 mark	M1 M1 A1	3	7

Question Number	Working	Notes		Mark
29(a)	$A E=\sqrt{30^{2}-18^{2}}+\text { conclusion }$ Note: Sufficient to state a correct Pythagorean statement with 30 and 18 substituted + conclusion	B1	1	
29(b)	$\sin \angle D A E=\frac{18}{30} \quad \text { (o.e.) }$ Note: A correct trig statement to find either $\angle D A E\left(36.9^{\circ}\right)$ or $\angle A D E\left(53.1^{\circ}\right)$ $36.9^{\circ} \text { or } 53.1^{\circ}$ Note: Accept awrt either 37° or 53° 53.1° (cao) Note: Accept angles, marked correctly, on the diagram Note: Answer only seen implies full marks Note: The answer must be as seen for the final A mark.	A1 A1	3	
29(c)	$\frac{h}{25}=\cos " 53.1^{\prime \prime}$ or $\begin{aligned} & \frac{18}{x}=\frac{30}{25} \\ & =15 \end{aligned}$ 24+"15" (39) (awrt their 3SF answer) Note: Final A1ft mark dependent on method Note: If the final answer is a whole number, accept 2SF Note: Beware of $D B=\sqrt{(30)^{2}+(25)^{2}}=39.0512 \ldots$ this is not incorrect but requires to be multiplied by $\sin (180-92.03 . .$.$) to gain M1, A1$ then final answer is A1ft	M1 A1 A1ft	3	7

	Note: Penalise use of radians once only in any dependent A mark			

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG037229 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

